Disinfection and Mechanistic Insights of Escherichia coli in Water by Bismuth Oxyhalide Photocatalysis.

نویسندگان

  • Ilana Sherman
  • Yoram Gerchman
  • Yoel Sasson
  • Hani Gnayem
  • Hadas Mamane
چکیده

This study demonstrates the potential of a new BiOCl0.875 Br0.125 photocatalyst to disinfect Escherichia coli in water under simulated solar irradiation. Photocatalytic efficiency was examined for different photocatalyst loadings, solar wavelengths, exposure times, photocatalyst concentration × contact time (Ct) concept and with the use of scavengers. To elucidate the inactivation mechanism, we examined DNA damage, membrane damage, lipid peroxidation and protein release. Both photolysis and photocatalysis were negligible under visible irradiation, but enhanced photocatalytic activity was observed under solar UVA (λ > 320 nm) and UVB (λ > 280 nm), with 1.5 and 3.6 log inactivation, respectively, after 40 min of irradiation. The log inactivation vs Ct curve for E. coli by UVA/BiOCl0.875 Br0.125 was fairly linear, with Ct = 10 g L-1 × min, resulting in 2 log inactivation. Photocatalytic treatment led to membrane damage, but without lipid peroxidation. Accordingly, protein was released from the cells after UVA or UVA/BiOCl0.875 Br0.125 treatment. Photocatalysis also increased endonuclease-sensitive sites vs photolysis alone, by an unknown mechanism. Finally, E. coli inactivation was not influenced by the addition of tert-butanol or l-histidine, implying that neither hydroxyl radicals nor singlet oxygen reactive species are involved in the inactivation process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis.

In recent years, layered bismuth oxyhalide nanomaterials have received more and more interest as promising photocatalysts because their unique layered structures endow them with fascinating physicochemical properties; thus, they have great potential photocatalytic applications for environment remediation and energy harvesting. In this article, we explore the synthesis strategies and growth mech...

متن کامل

Disinfection of the Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles

Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting the search for newer methods and newer materials. Disinfection of the Gram-negative bacterium Escherichia coli and the Gram-positive coccal bacterium Staphylococcus aureus in an aqueous matrix was achieved within 60 and 90 min, respectively, at 35 °C using solar-photocatalysis m...

متن کامل

Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films.

Photocatalysis is a promising method for the disinfection of potable water in developing countries where solar irradiation can be employed, thus reducing the cost of treatment. In addition to microbial contamination, water normally contains suspended solids, dissolved inorganic ions and organic compounds (mainly humic substances) which may affect the efficacy of solar photocatalysis. In this wo...

متن کامل

Disinfection of Water Borne Pathogens Escherichia coli and Staphylococcus aureus by Solar Photocatalysis Using Sonochemically Synthesized Reusable Ag@ZnO Core-Shell Nanoparticles

Water borne pathogens present a threat to human health and their disinfection from water poses a challenge, prompting search for newer methods and newer materials. Disinfection of Gram-negative bacterium Escherichia coli and Gram-positive coccal bacterium Staphylococcus aureus in aqueous matrix was achieved within 60 and 90 minutes respectively at 350C using solarphotocatalysis mediated by sono...

متن کامل

Photocatalytic inactivation of Clostridium perfringens spores on TiO2 electrodes

Disinfection of drinking water is commonly carried out by chlorination, however research has shown this method to be ineffective against certain rotozoan, viral and biofilm forming microorganisms. Furthermore, chlorination can result in the formation of mutagenic disinfection by-products. emiconductor photocatalysis may be a possible alternative to chlorination for point-of-use drinking water d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemistry and photobiology

دوره 92 6  شماره 

صفحات  -

تاریخ انتشار 2016